Hyperbolic conormal spaces and semilinear wave equation

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The wave equation on hyperbolic spaces

We study the dispersive properties of the wave equation associated with the shifted Laplace–Beltrami operator on real hyperbolic spaces and deduce new Strichartz estimates for a large family of admissible pairs. As an application, we obtain local well–posedness results for the nonlinear wave equation.

متن کامل

Semilinear Schrödinger Flows on Hyperbolic Spaces : Scattering in H 1

We prove global well-posedness and scattering in H for the defocusing nonlinear Schrödinger equations { (i∂t +∆g)u = u|u| ; u(0) = φ, on the hyperbolic spaces H, d ≥ 2, for exponents σ ∈ (0, 2/(d − 2)). The main unexpected conclusion is scattering to linear solutions in the case of small exponents σ; for comparison, on Euclidean spaces scattering in H is not known for any exponent σ ∈ (1/d, 2/d...

متن کامل

Global Attractors for a Semilinear Hyperbolic Equation in Viscielasticity

A semilinear partial differential equation of hyperbolic type with a convolution term describing simple viscoelastic materials with fading memory is considered. Ž . Regarding the past history memory of the displacement as a new variable, the equation is transformed into a dynamical system in a suitable Hilbert space. The dissipation is extremely weak, and it is all contained in the memory term....

متن کامل

Nonlinear Schrödinger Equation on Real Hyperbolic Spaces

We consider the Schrödinger equation with no radial assumption on real hyperbolic spaces. We obtain sharp dispersive and Strichartz estimates for a large family of admissible pairs. As a first consequence, we obtain strong wellposedness results for NLS. Specifically, for small intial data, we prove L 2 and H 1 global wellposedness for any subcritical nonlinearity (in contrast with the flat case...

متن کامل

Exponential Decay for the Semilinear Wave Equation with Source Terms

In this paper, we prove that for a semilinear wave equation with source terms, the energy decays exponentially as time approaches infinity. For this end we use the the multiplier method.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal de Mathématiques Pures et Appliquées

سال: 2004

ISSN: 0021-7824

DOI: 10.1016/j.matpur.2003.11.001